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Abstract

The parameters of application scorecards are usually estimated using a sample that ex-

cludes rejected applicants which may prove biased when applied to all applicants. This paper

uses a rare sample that includes those who would normally be rejected to examine the extent to

which (1) the exclusion of rejected applicants undermines the predictive performance of a

scorecard based only on accepted applicants, and (2) reject inference techniques can remedy

the influence of this exclusion.
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1. Introduction

Application credit scoring is the process of predicting the probability that an

applicant for a credit product will fail to repay the loan in an agreed manner. To as-

sess this process we require a model that represents the behavior of all applicants for

credit, yet typically we have only information about the repayment behavior of those
who have been accepted (and booked) for credit in the past. The behavior of those

who have been rejected, if instead they had been accepted, is unknown. If one esti-

mates a model using data only on accepted applicants, those estimated parameters

may be biased when applied to all applicants. In addition, if cut-off scores are chosen

to equalize the actual and predicted number of defaulting applicants then a sample of
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accepted applicants is likely to yield inappropriate cut-offs for the population of all

applicants.

Reject inference techniques attempt to incorporate characteristics of rejected

applicants into the process of calibrating a scorecard based primarily on the repay-

ment behavior of accepted applicants. Various reject inference techniques have been
proposed either in the literature or by consultancies. 2 Relatively little has been pub-

lished that empirically compares the predictive performance of algorithms that incor-

porate different possible reject inference techniques. Meester (2000), Banasik et al.

(2003), and Ash and Meester (2002) are examples. There is no published empirical

evaluation of the predictive performance of the reject inference technique that is per-

haps the most frequently used, augmentation (or re-weighting). The aim of this paper

is to report such an evaluation and to compare its performance with another reject

inference technique, extrapolation. These results may in turn be compared very pre-
cisely with those obtained by Banasik et al. (2003) using bivariate probit on the same

samples. Re-weighting and bivariate probit are superficially similar techniques in

some respect, but they typically depend on different premises and accomplish distinct

outcomes.

This paper analyses a rare sample drawn by a credit-provider who occasionally

grants credit to virtually all applicants in order to avoid biased estimation of score-

card parameters. Availability of normally rejected applicants in the data set permits

evaluation of how their absence from the data set would undermine prediction per-
formance. Scorecards calibrated with and without these applicants can be applied to

all applicants in order to assess the extent of inaccuracy in the normal situation

where they are excluded from scorecard modelling. After assessing the extent of inac-

curacy arising from absence of repayment behavior of rejected applicants, the avail-

able data sets permits consideration of the extent of corrective influence achieved by

some reject inference techniques. In particular, this paper considers the efficacy of

two reject inference techniques, for five acceptance thresholds and for two commonly

used types of predictor variable.
Re-weighting, extrapolation, and bivariate probit approaches are all techniques

that address a sample selection problem. Non-random selection of applicants results

in applicants with some characteristics being disproportionately present in the sam-

ple or perhaps not present at all. Heckman (2001) characterizes this type of problem

as a ‘‘weighting’’ problem in that various types of applicants have inappropriate

weights or even zero weights applied to them in the process of sampling. However,

re-weighting as the term is conventionally used may not fix this problem, since the re-

weighting of selected cases cannot retrieve types of applicants that were zero-
2 These include extrapolation, augmentation (Hsai, 1978), iterative reclassification (Joanes, 1993/4),

bivariate probit (Boyes et al., 1989), ‘‘parcelling’’, use of the EM algorithm (Demster et al., 1977), using a

multinomial logistic model (Reichert et al., 1983), and collecting repayment performance data for rejects

(Hand and Henley, 1993/4; Ash and Meester, 2002). The plausibility of the necessary assumptions in using

these techniques with data typically used in credit scoring models has been reviewed by a number of

authors (Ash and Meester, 2002; Banasik et al., 2003; Hand and Henley, 1993/4; Joanes, 1993/4; Thomas

et al., 2002).
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weighted in the selection process. Re-weighting can produce biased weighting for

those types of cases that are represented.

Extrapolation, the other reject inference technique examined in this paper, im-

putes a good–bad classification to rejected cases on the basis of an initial model esti-

mated using only accepted applicants. A final model then can be estimated using all
applicants. Perhaps the main motivation for re-weighting and for extrapolation is a

desire to accommodate the possibility that a single set of parameters does not govern

all applicants to be scored by the good–bad model. The most appropriate parameter

estimates to adopt would be an ‘‘average’’ of parameter values pertaining to accepted

and rejected applicants. This would tend to focus attention most on discriminating

among applicants whose apparent creditworthiness is most marginal. In the absence

of observed repayment performance for rejected applicants ‘‘average’’ values might

be best approximated by giving greater weight to accepted applicants who resemble
those who were rejected.

In contrast to this, bivariate probit with sample selection presumes that all cases

are governed by a single model distinguishing good applicants from bad. Its main

concern is the influence of missing variables arising from exclusion of rejected appli-

cants. For example, were all unemployed applicants to have been rejected, employ-

ment status would be a variable unavailable for subsequent modelling of repayment

behavior. Moreover, acceptance may have been on the basis of variables that are no

longer available, no longer suitable, or simply unknown in nature. A special instance
of such missing variables arises from the common practice of loan officers over-

riding the result of the acceptance model, implying the deployment of notional addi-

tional variables. Bivariate probit attempts to retrieve the influence of missing vari-

ables that are reflected in the prior acceptance decision. The re-weighting method

also resorts to an attempt to estimate the previous model, but does so with a view

to restore the influence of missing cases by altering the relative weight allocated

among the accepted cases. The previous model may have been distinct from that cur-

rently contemplated, but that is an incidental feature of the re-weighting approach.
In the next three sections general features of a credit scoring model are followed

by more detailed descriptions of what re-weighting and extrapolation involve. In sec-

tions that follow we explain our methodology and results. The final section con-

cludes.
2. A primer on credit scoring for economists

Logistic regression is a simple and appropriate technique for estimating the log of

the odds of default as a linear function of application attributes:
ln
P̂ ðDefaultÞ

1 � P̂ ðDefaultÞ

" #
¼ b0 þ b1X1 þ b2X2 þ b3X3 þ � � � þ bkXk: ð1Þ
Typically the explanatory variables may be expressed, alternatively, as a set of

dummy variable regressors, or as single regressors measuring the weights of evidence.



Table 1

Repayment behavior for ranges of years on electoral roll at current address

Complete years at

electoral address

Under 1

year

1 year 2–3

years

4–7

years

8–10

years

Not

known

Total

cases

Bads (defaulters) 1333 165 178 168 204 105 2153

Goods (repayers) 1744 353 577 640 838 141 4293

Bads/goods 0.7643 0.4674 0.3085 0.2625 0.2434 0.7447 0.5015

Relative odds 1.5241 0.9320 0.6151 0.5234 0.4854 1.4849 1.000

Weights of evidence 0.4214 )0.0704 )0.4859 )0.6474 )0.7228 0.3953
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Consider Table 1. The explanatory variable, years on electoral roll at current ad-

dress, has been coarse classified into a relatively small number of categories, primar-

ily with a view to simplification and parsimony in the number of variables. It can

then be represented by a set of five dummy variables, the first equal to 1 if ‘‘under

1 year’’ and zero otherwise, the second equal to 1 if ‘‘1 year’’ and zero otherwise,

and so on. The ‘‘not known’’ category has arbitrarily been chosen as the omitted var-

iable. Adoption of this set of regressors in the equation permits a simplified and con-

trolled non-linear relationship to be expressed.
Alternatively, the years on electoral roll at current address variable can be ex-

pressed as a single regressor in which all cases in each class are attributed a single

value called the weight of evidence. The values assigned to each class reflect the nature

of the logistic regression that predicts the logarithm of the ratio P ðBadÞ=P ðGoodÞ
where bad means defaulted and good means non-defaulter. The weight of evidence

assigned to each class is the logarithm of the PðBadÞ=P ðGoodÞ for that class less the

logarithm of the same ratio that applies to the whole sample. For example in the first

class the weight of evidence would be lnð0:7643=0:5015Þ ¼ lnð1:5241Þ ¼ 0:4214
which is the value assigned to every case in that class. If years on the electoral roll

were the only variable, this weights of evidence variable would fetch a coefficient

of unity and this single-regressor model would be equivalent to the five regressor

model involving dummy variables.

Once estimated, using a portion of the sample (a training sample), the logistic

regression model provides an estimated probability of default for each case in both

the training and the hold-out sample (i.e. the remaining observations). In predicting

defaulters these probabilities are generally taken as only relative indicators of a pro-
pensity to default. Instead of focusing on cases with a predicted probability above

0.5, one observes the estimated probability above which there are as many cases

as there are observed defaulters. In order to remove the influence of over-fitting from

assessment of model performance, both the estimated parameters of the model and

that probability cut-off are estimated on a training sample and applied to a hold-out

sample. Table 2 cross-tabulates actual and predicted good and bad cases.

The ROC (Receiver Operating Characteristic) curve provides a more general per-

formance measure that avoids the influence of an arbitrarily chosen probability
cut-off point. Consider the applicants ordered from worst to best in terms of their

estimated probability of default. Two functions of this score are plotted against each



Table 2

Performance for a multivariate weights of evidence model for English cases

Training sample English cases Hold-out sample English cases

Actual Predicted Percent

correct

Actual Predicted Percent

correctGood Bad Total Good Bad Total

Good 3432 861 4293 79.94 Good 1705 441 2146 79.45

Bad 861 1292 2153 60.01 Bad 408 668 1076 62.08

Total 4293 2153 6446 73.29 Total 2113 1109 3222 73.65

Fig. 1. ROC curve.
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other, the cumulative proportion of bads and of goods. The curve illustrated in Fig.

1 indicates the success of the scoring model in distinguishing bad applicants from

good. The straight diagonal line represents the performance of random selection

whereby one draws bads and goods in proportion to their preponderance in the sam-

ple. The higher the curve above this diagonal line, the better, and overall perfor-

mance is measured as the Area Under the ROC curve (AUROC).
3. Re-weighting

Although there are several variants of re-weighting, the basic method is as follows

(see Table 3). First an accept–reject (AR) model is estimated using cases which have

been accepted or rejected over a given period of time by the current model. If the

model has been applied without over-rides, if the explanatory variables within it

are known (call them Xold), and if the algorithm used, the functional form of the

model, and all other parameters of the original estimation process are known, then
this model can be estimated perfectly. Otherwise it cannot be estimated perfectly.



Table 3

Re-weighting

Band (j) Number of

goods

Number of

bads

Number of

accepts

Number of

rejects

Band weight

1 g1 b1 A1 ¼ g1 þ b1 R1 ðR1 þ A1Þ=A1

2 g2 b2 A2 ¼ g2 þ b2 R2 ðR2 þ A2Þ=A2

– – – – – –

– – – – – –

– – – – – –

– – – – – –

– – – – – –

n gn bn An ¼ gn þ bn Rn ðRn þ AnÞ=An
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Suppose we use a set of explanatory variables, Xnew, to model the original accept–re-

ject decision process. The scores predicted by this AR model for each case,

Si ¼ sðXnew;iÞ, are divided into bands and within each band, j, the numbers of rejected

Rj and accepted Aj cases are found. For each Aj there are gj good cases and bj bad

cases.

Assume the bands are chosen so that within any band, j, the probability that an

accepted applicant with score Sj is good equals the probability that a rejected appli-

cant with score Sj is good, i.e.,
3 Se
P ðgjSj;AÞ ¼ P ðgjSj;RÞ: ð2Þ
Then
gj=Aj ¼ grj=Rj;
where grj is the imputed number of goods amongst the rejects within band j; grj=Rj is

the proportion of rejects in band j that would have been good had they been ac-

cepted. The re-weighting technique weights the Aj accepts in band j to represent both

the Aj and Rj cases in the band, i.e. each Aj is weighted by ðRj þ AjÞ=Aj. This is the

inverse of the probability of acceptance in band j and is the probability sampling

weight for band j.
Since accepted scores are monotonically related to the probability of being ac-

cepted we can replace scores by these probabilities, and if instead of bands we con-

sider individual values, where there are m possible values (because there are m cases),

each row in the expanded Table 3 relates to PðAiÞ; i ¼ 1 . . .m. Thus each accepted

case has a probability sampling weight of 1=P ðAiÞ. A good–bad model using the

weighted accepts is then estimated.

In a world where a single set of parameters governs accepted and rejected appli-

cants alike, one might presume that, although re-weighting would have no scope to
eliminate bias, neither would it introduce bias. This is not necessarily so. If Xold is not

a subset of Xnew the model’s parameter estimates will be biased. 3
e Little and Rubin (1987), Hand and Henley (1993/4, 1994), and Banasik et al. (2003).
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In our initial analysis – hereafter referred to as investigation one – re-weighting

involves adoption of the credit-provider’s accept–reject status for all cases, and this

was certainly based on a model including variables unknown to us. In the subsequent

analysis – hereafter referred to as investigation two – the variable selection of the

accept–rejection model has been contrived so as to differ from that of the good–
bad model such that both models have variables excluded from the other. In short

we simulate a world where Xold and Xnew differ yet the modellers assume that they

do not. We adopt this approach primarily to make the analysis realistic, particularly

given the inevitable divergence between the credit supplier’s model that governed its

accept–reject decision and any subsequent model likely to be developed. Moreover,

we recognize that this is probably the usual circumstance, particularly since the pro-

cess of over-riding statistical models in the acceptance decision involves implicit

introduction of other variables.
4. Extrapolation

As with re-weighting there are several methods of extrapolation. The method we

consider is to estimate a posterior probability model using accept-only data, extrap-

olate the probability of default for the rejected cases and by applying a cut-off prob-

ability classify the rejected cases as either good or bad. A new good–bad model is
then estimated for all cases (see Ash and Meester, 2002).

If the regression coefficients of the good–bad model that are applicable to the ac-

cepts also apply to the rejects then this procedure would have minimal effect on the esti-

mates of these coefficients, although the standard errors of the estimated coefficients

will be understated. However, if variables other than Xnew affect the probability of

acceptance, extrapolation would yield biased estimates of the posterior probabilities.

If Xold is a subset of Xnew a further source of error in the predicted probabilities

may occur due to the proportion of goods and bads in the training sample not being
equal to the proportion in the all-applicant population. This may cause the cut-off

probabilities, which equalize the expected and actual number of bads in the training

sample, to deviate from the cut-offs required to equalize the actual and predicted

number of bads in the all-applicant population. The regression model may give unbi-

ased posterior probabilities, but applicants would be misallocated because inappro-

priate cut-offs may be applied.
5. Methodology

The proprietary nature of the available data set restricts the detail that can be de-

scribed here, but its main characteristics can be set out. The data pertain to appli-

cants for credit within a fixed period during 1997. To obtain credit a customer

needed to progress through two stages. First, an applicant sought information about

the product. Some potential applicants were rejected at this stage. No information

about these applicants was provided, but the credit grantor has indicated that this
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was a negligibly small proportion of applicants. Subsequent tables make plain the

presence of a very high proportion of dubious applicants, and details of many indi-

vidual cases confirm the presence of cases with appalling credit histories. Second,

those who receive information apply for the product.

A repayment performance is defined to be ‘‘bad’’ if the account was transferred
for debt recovery within 12 months of the credit being first taken. All other accounts

were defined to be ‘‘good’’. We had available the accept–reject decision that the

credit grantor would have implemented for each applicant under normal practice,

although for our sample the indicated decision had not been implemented. This deci-

sion was deterministic – there were no overrides – and was based on an existing sta-

tistical model that had been parameterized from an earlier sample. Neither the

existing model nor its sample were available to us, but the provided data set contains

almost all of the variables needed to estimate the existing model. Only a rela-
tively small subset of these provided variables was actually used to build that existing

model. Little was indicated about the existing model beyond that.

In an earlier paper (Banasik et al., 2003) we indicated, using the same data set,

that there was limited scope for reject inference to achieve an increase in predictive

performance using the data supplier’s acceptance threshold. Investigation one in this

paper explores how much of that limited scope is achieved by re-weighting, again

using the data supplier’s acceptance threshold. As in the earlier paper we recognize

that perhaps the main influence restricting the scope for improved predictive perfor-
mance is the already very low acceptance threshold of the credit provider who nor-

mally accepts roughly two thirds of applicants of whom nearly a quarter are ‘‘bad’’.

Such a sample already focuses ample attention on poor credit risks. Accordingly,

investigation two explores how the scope for improved predictive performance

and its achievement by reject inference might both be varied by alteration of the

acceptance threshold. Analysis distinguishes two influences of lowering the accep-

tance threshold, achievement of improved ranking among cases and discernment

of the cutoff score that will reflect the proportion of bads in the population.
Investigation one, which deals with the credit-grantor’s own normal acceptance

threshold, was based upon stratified proportional random samples that ensured

the same good–bad ratio prevailed in training samples as in corresponding hold-

out samples. Analysis involves two model comparisons. First, a model parameterized

on a training sample that includes both accepted and rejected cases is contrasted with

another parameterized on a training sample of only accepted cases. This establishes

the scope for reject inference to improve prediction. Secondly, the model parameter-

ized only on accepted cases is contrasted with one that benefits from some form of
reject inference.

Investigation two, which considers the scope and achievement of reject inference

under a variety of acceptance thresholds, is essentially the same as for investigation

one. Unfortunately, since neither the data provider’s existing model nor even the

scores it generated are available, this analysis must depend on an initial accept–reject

model fabricated to resemble that of the data provider yet is distinct from our own

good–bad model. In this way it should reflect a normal situation in which a good–

bad model becomes stale in terms of its selection of predictor variables and param-
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eter estimates and is replaced by another. The initial model then becomes the accept–

reject model that has determined (in conjunction with over-rides) which applicants

are used for estimating the new good–bad model. 4

The results of various experiments reported in the tables focus mainly on orders of

magnitude and patterns thereof. When proportions are roughly 70% and apply to a
pair of hold-out samples of 4069, as in investigation one, a standard error is roughly

1% and one-tail significance requires a percentage difference of 1.645%. Investigation

two deals with the same sort of proportion and hold-out samples of 3222, so that

such significance requires a difference of 1.878%.
6. Potential gains from re-weighting with original acceptance criterion

Our results when we used the data granter’s classification of cases into accepts and

rejects are shown in Tables 4 and 5. Tables 4 and 5 show the predicted performance

using weights of evidence with and without re-weighting respectively. We used all of

the 46 variables that were available to us.

Using area under ROC as the measure of accuracy (Comparison 1 in Tables 4 and

5) four observations can be made. (1) The scope for improvement by any reject infer-

ence technique is very small. Estimating an unweighted model for accepted appli-

cants only (Table 4) and testing this on a hold-out sample of all applicants to
indicate its true predicted performance gives an AUROC of 0.7818 compared to

0.7837 for a model estimated for a sample of all applicants. (2) Establishing an

unweighted accept-only model and testing it on an accept-only hold-out sample

overestimated the performance of the model. An accept-only model tested on an

accept-only hold-out gave an AUROC of 0.7932 whereas the performance of the

model tested on a sample of all applicants, including accepts and rejects, is 0.7818.

(3) Using re-weighting as a method of reject inference was found to reduce the pre-

dictive performance of the model compared with an accept-only model; the AUROC
values were 0.7765 (Table 5 Comparison 1) and 0.7818 (Table 4 Comparison 1)

respectively. (4) Estimating a re-weighted model and testing it on an accept-only

sample also overestimated the true performance, giving an AUROC of 0.7875 rather

than a more representative 0.7765 (Table 5 Comparison 1).

The predictive performances using percentages correctly classified are also shown

in Tables 4 and 5. Four observations can be made from these. (1) The scope for

improvement due to improved model coefficients is small, from 71.74% to 72.13%

(Table 4 Comparison 2). (2) The accept-only model tested on an accept-only hold-
out sample (with training sample cut-offs) would considerably overestimate the

model’s performance: 76.19% correctly classified compared with 70.83% when tested
4 A single coarse classification governs all models estimated in this paper. However, weights of evidence

for all models have been estimated on the relevant training sample. All analysis was conducted using

alternatively weights of evidence variables and dummy variables in order to test sensitivity of reject

inference to this feature. Given the similarity of approaches using both types of variables, generally results

for only weights of evidence are tabulated here.



Table 4

Original data: Simple logistic model with weights of evidence

Comparison 1: Area under ROC

Predicting

model

Training

sample

cases

Own band hold-out All-applicant hold-out Accept

analysis

delusion
Number

of cases

ROC

area

Number

of cases

ROC area

Accepted 5413 2755 0.7932 4069 0.7818 0.0114

All case 8139 4069 0.7837 4069 0.7837

Comparison 2: Percentage correctly classified

Predicting

model

Own band hold-out prediction All-applicant hold-out prediction Accept

analysis

delusion
Number

of cases

Own band

training

cut-off

Own band

hold-out

cut-off

Number

of cases

Own band

training

cut-off

All band

hold-out

cut-off

Accepted 2755 76.19% 75.97% 4069 70.83% 71.74% 5.36%

All case 4069 72.16% 72.13% 4069 72.16% 72.13%

Table 5

Original data: Re-weighted logistic model with weights of evidence

Comparison 1: Area under ROC

Predicting

model

Training

sample

cases

Own band hold-out All-applicant hold-out Accept

analysis

delusion
Number

of cases

ROC

area

Number

of cases

ROC area

Accepted 5413 2755 0.7875 4069 0.7765 0.0110

All case 8139 4069 0.7837 4069 0.7837

Comparison 2: Percentage correctly classified

Predicting

model

Own band hold-out prediction All-applicant hold-out prediction Accept

analysis

delusion
Number

of cases

Own band

training

cut-off

Own band

hold-out

cut-off

Number

of cases

Own band

training

cut-off

All band

hold-out

cut-off

Accepted 2755 76.15% 76.04% 4069 71.25% 71.34% 4.90%

All case 4069 72.16% 72.13% 4069 72.16% 72.13%
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on an all application sample (Table 4 Comparison 2). (3) The re-weighted model

gave a similar performance to the accept-only model when tested on the all-applicant

sample (with the training sample cut-offs): 71.25% correct (Table 5 Comparison 2)

compared with 70.83% (Table 4 Comparison 2), respectively. (4) Using an accept-

only hold-out sample with accept-only cut-offs considerably over emphasizes the per-

formance of the re-weighted model compared with a hold-out of all applications:

76.19% correct compared with 71.25% respectively (Table 5 Comparison 2).
7. How gains from reject inference depend on the rejection rate

In order to investigate the extent to which the efficacy of reject inference depends

on the rejection rate, a new accept–reject model was estimated. This model then pro-
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vided scores by which applicants’ acceptance status could be varied. The new model

required some of the data set to be dedicated to the accept–reject model and the rest

to be dedicated to the good–bad models. The variables used to build each of these

two types of model differed by an arbitrary selection such that each model had some

variables that were not included in the other. We chose to estimate the accept–reject
model with the 2540 Scottish cases in the data, and to estimate the good–bad model

with the 9668 English and Welsh (hereafter English) cases in the data.

Typically, the accept–reject distinction would arise from a previous and perhaps

somewhat obsolete credit-scoring model that distinguished good applicants from

bad. It may also reflect some over-riding of credit scores by those using such a mod-

el. In setting up Scottish accept–reject and English good–bad models, the national

difference in the data used for the two models appears as a metaphor for the

inter-temporal difference that would separate the observations used to build two suc-
cessive models. The exclusion of some Scottish variables in the development of the

English model may be considered to represent, in part, the process of over-riding

the acceptance criteria provided by the Scottish model. The exclusion of some Eng-

lish variables in the development of the Scottish model represents the natural ten-

dency of new models to incorporate new variables not previously available. The

progress of time also facilitates the incorporation of more variables by providing

more cases and thereby permitting more variables to enter significantly.

A two-part procedure was used to select variables for the Scottish model. To retain
the character of the data-supplier’s original acceptance model an eligible pool of vari-

ables was identified by three stepwise (backward Wald) regressions using Scottish,

English, and UK cases. In these regressions the data supplier’s acceptance status

was the dependent variable. An explanatory variable that survived in any one of

the three equations was deemed to have possibly influenced the acceptance by the

data supplier. The eligible variables were then used to model good–bad behavior in

Scotland in a backward stepwise procedure that eliminated further variables.

The variable set for the good–bad model, to be parameterized on English data, was
determined with a backward stepwise regression using English data, starting with all

variables available to the English cases. A few scarcely significant variables common

to the English and Scottish variable sets were then eliminated from one or the other to

increase the distinctiveness of the two regressor lists. Table 6 indicates which of the

original 46 variables were selected for each equation. Also indicated are the number

of coarse classes assigned for each variable as well as the minimum frequencies. The

former indicates the number of dummy variables required in total (the sum of classes

minus one); the latter indicates possible sensitivity to individual cases.
The English data was scored using the variable set and estimated parameters de-

rived from the Scottish model, and then collected into five bands according to this

score. Table 7 shows the proportion of good cases in each of these non-cumulative

bands and demonstrates a broad variety of performance, varying from just under

90% good in the first quintile to half that rate in the last. Each of these bands had

training and hold-out cases determined by proportional stratified random sampling

whereby in each band a third of good cases and a third of bad cases were randomly

allocated to the hold-out sample. This sampling design was adopted to enhance



Table 6

Variables included in the accept–reject and good–bad equations

Variable description Good–bad

equation

Accept–reject

equation

Classes Minimum

frequency

Time at present address U 8 281

B1 U 4 242

Weeks since last county court judgement (CCJ) U 6 244

B2 U 5 324

B3 U U 6 453

Television area code U U 5 26

B4 U U 6 496

Age of applicant (years) U U 6 201

Accommodation type U U 5 180

Number of children under 16 U U 6 130

P1 U U 3 377

Has telephone U U 3 1883

P2 U U 6 611

B5 U U 4 239

B6 U U 5 320

P3 U U 4 516

B7 U 6 1108

B8 U 6 407

B9 U 6 1443

Type of bank/building society accounts U 6 188

Occupation code U 6 129

P4 U 6 1108

Current electoral roll category U 5 458

Years on electoral roll at current address U 6 458

B10 U 6 403

P5 U 3 379

B11 U 6 324

B12 U 4 1163

B13 U 4 1291

Number of searches in last 6 months U 4 406

Bn¼bureau variable n; Pn¼proprietary variable n; U denotes variable is included.
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comparability of corresponding hold-out and training cases and to retain the pattern

of behavior in successive bands.

Finally, the bands were accumulated with each band including the cases of those

bands previously above it. These are the bands used in subsequent analysis. Each

band represents a possible placement of an acceptance threshold with the last repre-

senting a situation where all applicants are accepted.

For all of the bands the same coarse classification is used as in investigation one,

but for each band separate weights of evidence were calculated for each variable for
each of the five bands.

8. Banded results

In Table 9 the re-weighted results were calculated from an accept–reject model (to

give the weights) followed by a good–bad model. The same variable sets were used in



Table 7

Sample accounting

Cases not cumulated into English acceptance threshold bands to show good rate variety

All sample case Good

rate (%)

Training sample cases Hold-out sample cases

Good Bad Total Good Bad Total Good Bad Total

Band 1 1725 209 1934 89.2 1150 139 1289 575 70 645

Band 2 1558 375 1933 80.6 1039 250 1289 519 125 644

Band 3 1267 667 1934 65.5 844 445 1289 423 222 645

Band 4 1021 912 1933 52.8 681 608 1289 340 304 644

Band 5 868 1066 1934 44.9 579 711 1290 289 355 644

English 6439 3229 9668 66.6 4293 2153 6446 2146 1076 3222

Scottish 1543 997 2540 60.7

Total 7982 4226 12208 65.4

Cases cumulated into English acceptance threshold bands for analysis

English sample cases Good

rate (%)

Training sample cases Hold-out sample cases

Good Bad Total Good Bad Total Good Bad Total

Band 1 1725 209 1934 89.2 1150 139 1289 575 70 645

Band 2 3283 584 3867 84.9 2189 389 2578 1094 195 1289

Band 3 4550 1251 5801 78.4 3033 834 3867 1517 417 1934

Band 4 5571 2163 7734 72.0 3714 1442 5156 1857 721 2578

Band 5 6439 3229 9968 66.6 4293 2153 6446 2146 1076 3222
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both models for three reasons. First, this is representative of a typical application

(see above). Second, we reduce the type of bias noted by Hand and Henley (1993/

4). Third, if the variables of the original accept–reject model were used the model

would be almost perfectly fitted yielding weights of 1 and infinity.

Comparison 1 in Tables 8 and 9 show our results using AUROC as a performance

measure and Comparison 2 in these tables show our results using percentages cor-

rectly classified. These tables show weights of evidence results. Apart from showing

that the scope for any improvements in performance increased as the cut-off in the
original model is raised, as was shown in an earlier paper, these tables indicate many

new findings. First, comparing Comparison 1 column 6 in Tables 8 and 9 (where the

hold-out relates to a sample of all applicants) shows that the use of re-weighting re-

duces predicted performance compared with an unweighted model. Furthermore, the

deterioration is greater for bands 1 and 2 than for bands 3 and 4. Generally, it seems

the higher the cut-off score in the original accept–reject model the greater the dete-

rioration caused by re-weighting.

Second, comparing the performance when tested on a hold-out sample from the
accepted only (i.e. for each band separately) with that found when using a hold-

out sample for all applicants (Comparison 1 in Tables 8 and 9, column 4 with col-

umn 6) shows that the former is overoptimistic in its indicated result. This is true

for the unweighted model and for the model with re-weighting. For example, if

the original accept–reject model had a high cut-off (band 1) and the analyst used

these accepts to build and test a model, the indicated performance would be an

AUROC of 0.8654 whereas the performance on a sample representative of all



Table 9

Band analysis: Re-weighted logistic model with weights of evidence

Comparison 1: Area under ROC

Predicting

model

Training

sample

cases

Own band hold-out All-applicant hold-out Accept

analysis

delusion
Number

of cases

ROC

area

Number

of cases

ROC

area

Band 1 1289 645 0.8483 3222 0.7374 0.1109

Band 2 2578 1289 0.7509 3222 0.7104 0.0405

Band 3 3867 1934 0.8034 3222 0.7920 0.0114

Band 4 5156 2578 0.8017 3222 0.8036 )0.0019
Band 5 6446 3222 0.8049 3222 0.8049

Comparison 2: Percentage correctly classified

Predicting

model

Own band hold-out prediction All-applicant hold-out prediction Accept

analysis

delusion
Number

of cases

Own band

training

cut-off

Own band

hold-out

cut-off

Number

of cases

Own band

training

cut-off

All band

hold-out

cut-off

Band 1 645 88.37% 88.53% 3222 69.77% 68.96% 18.60%

Band 2 1289 80.45% 80.92% 3222 68.56% 67.60% 11.89%

Band 3 1934 79.42% 79.42% 3222 72.38% 72.94% 7.04%

Band 4 2578 75.68% 75.80% 3222 72.84% 73.74% 2.84%

Band 5 3222 73.65% 73.49% 3222 73.65% 73.49%

Table 8

Band analysis: Simple logistic model with weights of evidence

Comparison 1: Area under ROC

Predicting

model

Training

sample

cases

Own band hold-out All-applicant hold-out Accept

analysis

delusion
Number

of cases

ROC

area

Number

of cases

ROC

area

Band 1 1289 645 0.8654 3222 0.7821 0.0833

Band 2 2578 1289 0.8249 3222 0.7932 0.0317

Band 3 3867 1934 0.8175 3222 0.8009 0.0166

Band 4 5156 2578 0.8108 3222 0.8039 0.0069

Band 5 6446 3222 0.8049 3222 0.8049

Comparison 2: Percentage correctly classified

Predicting

model

Own band hold-out prediction All-applicant hold-out prediction Accept

analysis

delusion
Number

of cases

Own band

training

cut-off

Own band

hold-out

cut-off

Number

of cases

Own band

training

cut-off

All band

hold-out

cut-off

Band 1 645 89.30% 89.77% 3222 70.20% 72.56% 19.10%

Band 2 1289 83.40% 83.86% 3222 70.58% 72.75% 12.82%

Band 3 1934 79.21% 79.42% 3222 71.97% 73.49% 7.24%

Band 4 2578 75.37% 75.56% 3222 72.47% 73.81% 2.90%

Band 5 3222 73.65% 73.49% 3222 73.65% 73.49%
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applicants would be 0.7821 (Table 8 Comparison 1). The difference of 0.0833 is indic-

ative of the error that would be made and we call this �accept analysis delusion’. Val-
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ues of this delusion are shown in column 7 in Tables 8 and 9. Notice that the size of

the delusion is positively and monotonically related to the height of the cut-off in the

original accept–reject model. Similar results are gained when dummy variables are

used.

Our results using the percentage correctly classified are shown in Comparison 2 of
Tables 8 and 9. Since an analyst would use the hold-out sample merely to test a mod-

el whose parameters (including the cut-off) were calculated from a training sample,

one can see from columns 3 and 6 that the size of the delusion is substantial at

cut-offs that equate expected and actual numbers of bads in the training band.

For example, with a high cut-off (band 1) in the original accept–reject model the

delusion is 19.10% of cases in both the unweighted and weighted models.

Third, column 6 of Comparison 2 in each of Tables 8 and 9 indicates the modest

scope for improved classification by using information about the good–bad behavior
of rejected applicants. Each result in that column indicates classification perfor-

mance over applicants from all bands when parameters and cut-offs are taken from

the particular band. In particular, the cut-off is taken such that predicted and actual

numbers of goods in the training sample are equal. In this way the chosen cut-off re-

flects in part the band’s own good–bad ratio, and takes no account of the all-appli-

cant good–bad ratio. As we move from the low risk Band 1 to the higher risk bands

below it we observe classification performances that approach that which is possible

when no applicant is rejected. In Table 8, for example, the maximum scope for im-
proved classification is only 3.45% (73.65%–70.20%). At best reject inference can but

close this gap by producing better regression coefficients and/or by indicating better

cut-off points.

Fourth, column 7 of Comparison 2 in each of Tables 8 and 9 suggests a negligible

scope for reject inference to improve classification performance were the population

good–bad rate to be actually known. In that column each band reports classification

where each applicant is scored using regression coefficients arising from estimation in

that band’s training sample. However, the cut-off score is that which will equate the
number of predicted bads among all applicants with the actual number of bads in the

hold-out sample of all applicants. In this way each band’s cut-off is determined by a

good sample-based indication of the good–bad ratio for the whole population of

applicants. As we move from the low risk Band 1 to the higher risk bands below

it we see a maximum scope for improved classification of only 0.83% (73.49%–

72.56%). Indeed for all but the top two bands there is no scope for improvement

at all. The negative scope for improvement in Band 4 (73.49%–73.81%) must be seen

as a reflection of sample error and indicates thereby how precariously small is even
the improvement potential for band 1.

Of course, knowledge of the population good–bad ratio required to generate the

results of column 7 in Comparison 2 is unlikely to be available, and so column 6 re-

mains the likely indication to an analyst of the scope for reject inference to improve

classification. However, since the scope for improvement all but vanishes in the pres-

ence of a suitable cut-off point, there seems correspondingly negligible potential ben-

efit from the removal of bias or inefficiency in the estimation of regression

coefficients used to score the applicants.
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Finally, turning to the actual classification performance when re-weighting is used

to attempt improvement in the estimation of regression coefficients, corresponding

elements in column 6 of Comparison 2 of Tables 8 and 9 indicate very small

improvements for Bands 3 and 4 and worse performances in Bands 1 and 2. For

example, in Band 1 the performance of the re-weighted model is 69.77% compared
with 70.20% for the unweighted model, yet in Band 4 the corresponding perfor-

mances are 72.84% and 72.47%, respectively. An interesting comparison feature of

the re-weighting procedure is shown by comparing Table 8 column 7 with Table 9

column 7. Table 9 column 7 presents a relatively large scope for improved perfor-

mance even in the presence of a suitable cut-off that reflects knowledge of the pop-

ulation good–bad ratio. The potential for improvement is 4.43% (73.49%–68.96%).

Therefore, while re-weighting undermines predictive performance by a minimal

amount without such knowledge, it appears to undermine ability to deploy such
information. Again these results were found when dummy variables were used

instead of weights of evidence.
9. Extrapolation results

The foregoing discussion has demonstrated relatively little potential for improved

regression coefficients but indicates considerable scope for using the population
good–bad ratio to advantage. Extrapolation is mainly an attempt to obtain a good

indication of that ratio. Rejects are first classified as good or bad by using a good–

bad model parameterized using the training accept-only sample together with cut-

offs that equalize the actual and predicted number of bads in the training sample

of a particular band. These predictions are then combined with the actual good–

bad values observed in the band, and an all-applicant model is calculated. This sec-

ond model can hardly be expected to produce very different coefficients, so any scope

for improvement will arise out of the application of a cut-off that reflects the good–
bad ratio imputed for the all-applicant sample.

Table 10 shows that extrapolation gave a virtually identical predictive perfor-

mance compared with a model estimated only for the accepts. This is roughly true

for every band. With dummy variables the results are almost consistently better al-
Table 10

Band analysis: Extrapolation percentage correctly classified

All-applicant hold-out sample using training sample cut-off points

Predicting

model

Number

of cases

Weights of evidence predictions Dummy variable predictions

Simple

logistic

Logistic with

extrapolation

Simple

logistic

Logistic with

extrapolation

Band 1 3222 70.20% 69.80% 68.65% 68.56%

Band 2 3222 70.58% 70.20% 69.46% 69.58%

Band 3 3222 71.97% 71.79% 72.13% 72.35%

Band 4 3222 72.47% 72.63% 72.91% 73.34%

Band 5 3222 73.65% 73.65% 74.24% 74.24%
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beit by a small amount. With weights of evidence the results seem very slightly worse

when using extrapolation. However, that result might be reversed were the weights of

evidence to be recalibrated using the imputed values of good–bad performance as in

principle they should have been. The small margins of potential benefit indicated

provide but a hint of what further research might indicate.
10. Conclusion

The analysis of reject inference techniques discussed above benefits from availabil-

ity of a data set that permits the results of reject inference to be assessed in light of

the actual repayment performance of ‘‘rejected’’ cases. The data set reflects a situa-

tion in which virtually no applicant was rejected in order for the data supplier to
infer the character of the population of all applicants. The virtual absence of actual

rejection in the supplied data has permitted consideration of both very high and low

notional acceptance thresholds.

Unfortunately, neither an actual accept–reject score for each applicant nor the

underlying model for determining it was available. Nevertheless availability of the

accept–reject status that the data supplier would normally implement for each appli-

cant has permitted an explicit and realistic accept–reject model to be fabricated.

While this model does not reflect actual experience, it provides an explicit and plau-
sible basis for inferring whether applicants might have been accepted.

One very clear result is the extent to which measures of predictive performance

based on a hold-out sample of accepted applicants are liable to be misleadingly opti-

mistic. This might have been expected in cases where the good–bad ratio is high, but

the results presented here provide an empirical indication of the possible extent of

error.

The other analytical findings seem quite plain. (1) Even where a very large propor-

tion of applicants is rejected, the scope for improving on a model parameterized only
on those accepted appears modest. Where the rejection rate is not so large, that scope

appears to be very small indeed. That result is consistent with the data originally pro-

vided concerning the actual acceptance status of applicants and with the banded

analysis that deploys a notional acceptance status. (2) Reject inference in the form

of re-weighting applicants within a training sample of accepted cases and adopting

a cut-off point based on those accepted cases appears to perform no better than un-

weighted estimation. In fact where the rejection rate is high, results appear to be

quite noticeably worse. (3) Re-weighting appears to impede useful application of
knowledge about the good–bad rate prevailing in the population, but without pro-

viding any compensating benefit. (4) Reject inference in the form of extrapolation

appears to be both useless and harmless. It tends to leave regression coefficients un-

changed, but the indication it provides about the population’s good–bad rate seems

to be inadequately accurate to provide benefit in spite of being informed by observed

attributes of rejected applicants.

Useful implementation of reject inference seems to depend on accurate estimation

of the potential good–bad ratio for the population of all applicants. Simple applica-
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tion of that ratio then seems indicated. More elaborate tweaking of a vast set of coef-

ficients does not seem to promise much potential benefit on the basis of the findings

presented here.
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